
IMPACT OF CEREBRAL OXIMETRY MONITORING:

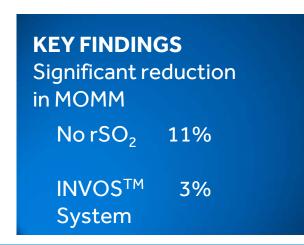
MITIGATING SURGICAL COMPLICATIONS IN THE CARDIAC OPERATING ROOM

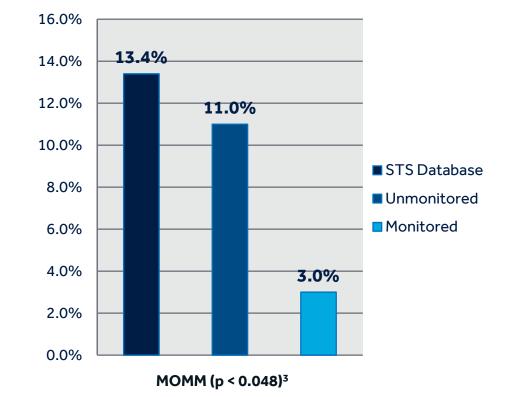
SURGICAL COMPLICATIONS COMMON, COSTLY & DEBILITATING

THE RISKS ARE VERY REAL

In clinical trials, cerebral desaturation during cardiac surgery is associated with:

- Postoperative MOMM³
- Neurologic injury^{4,6,7}
- Increased time on mechanical ventilation⁸
- Prolonged hospital stay^{3,4}

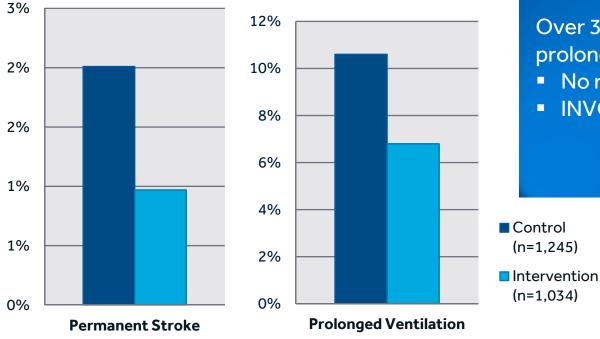

Cerebral oximetry enables detection of desaturation, prompt intervention and improved patient outcomes.^{3*}


* Interventions to return the patient's rSO₂ to baseline using the INVOS™ system have been shown to improve outcomes after surgery

PUBLISHED CLINICAL EVIDENCE

Reduction in Major Organ Morbidity & Mortality (MOMM):³

- Death within 30 days
- Neurological injury including permanent stroke
- Need for ventilation (>48 hours)
- Renal failure requiring dialysis
- Re-operation for any reason
- Mediastinitis/deep sternal infection



3 INVOS[™] System Comparative Effectiveness Analysis Results | February 2017

PUBLISHED CLINICAL EVIDENCE

INVOS[™] system use on cardiac surgery patients reduced permanent stroke, prolonged mechanical ventilation and length of hospital stay⁹

KEY FINDINGS

50% reduction in permanent stroke

- No rSO₂ monitoring 2%
- INVOS[™] system <1%


Over 35% reduction in need for prolonged mechanical ventilation

- NorSO₂ 10.6%
- INVOSTM system- 6.8%

THE OPPORTUNITY

What is the INVOS[™] system?

- Cerebral/somatic oxygenation monitor
- Using INVOSTM system monitoring may:
 - Expedite interventions^{10, 11}
 - Reduce postoperative complications^{3, 6, 9}
 - Reduce length of ICU and hospital stays ^{3,9}
 - Contribute to lower cost of care^{3, 9, 12}
 - Help improve outcomes following cardiac surgery³
- Only technology specifically used in 600+ published, peer-reviewed articles¹³

The top-ranked U.S. hospitals for cardiology and heart surgery, as identified by U.S. News & World Report,¹³ use INVOS[™] technology

- 19 of the top 25 hospitals with adult cardiac programs
- 20 of the top 25 hospitals with pediatric programs

WHAT IF YOU COULD PREVENT COMMON, COSTLY AND DEBILITATING COMPLICATIONS IN YOUR CARDIAC OR?

Our goal

To prove the INVOS[™] cerebral/somatic monitoring system has a definitive and measured association with **reduced complications, lowered costs and better outcomes in cardiac surgery**

Did we succeed?

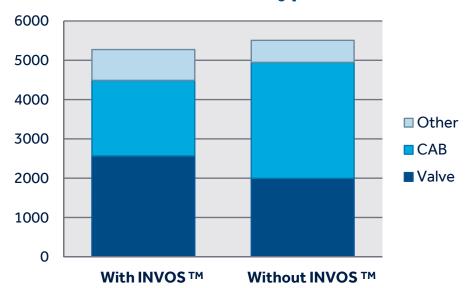
Let's review the results of our comparative effectiveness analysis of INVOS[™] monitoring in cardiac surgeries

THE SOCIETY OF THORACIC SURGERY (STS)

- Non-profit organization founded in 1964 representing more than 7400 surgeons, researchers, and allied health professionals worldwide.
- Dedicated to ensuring the best possible outcomes for all surgical procedures involving the chest.
- Mission: to enhance the ability of cardiothoracic surgeons to provide the highest quality patient care through education, research, and advocacy.¹⁴

STS Database

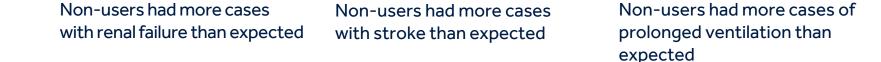
- Established in 1989 as a world registry for cardiac surgery. The purpose of this database was quality improvement and patient safety among cardiothoracic surgeons.
- Contains approximately 5.9 million surgical records and gathers information from 90% of facilities that perform cardiac surgery in the US.¹⁵

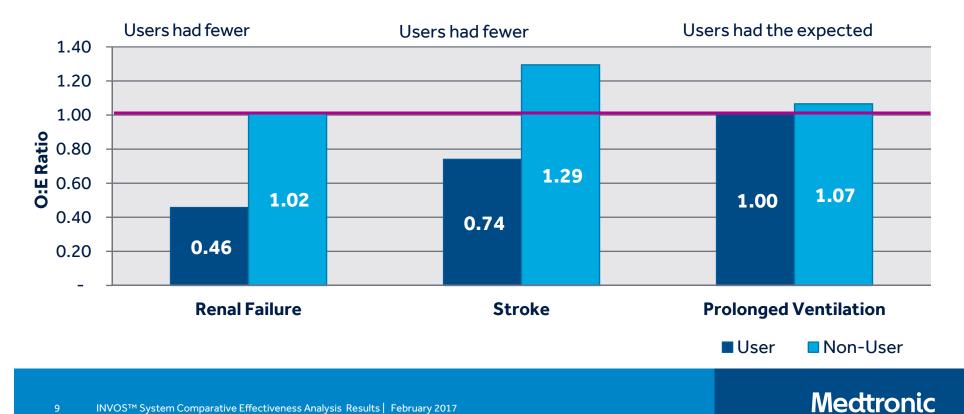

STS Risk Calculator

 Users can calculate a patient's risk of mortality and other morbidities, such as long length of stay and renal failure based on the patient's risk factors.¹⁶

COMPARATIVE EFFECTIVENESS NEW FINANCIAL EVIDENCE¹⁷

Collected 10,778 cases as submitted to and approved by STS:

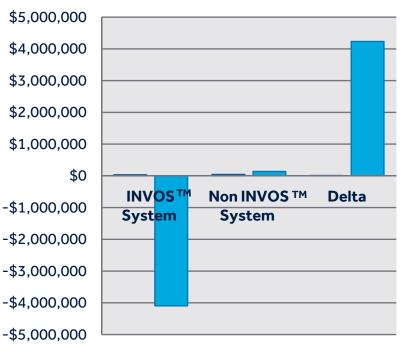

- Across seven cardiac centers
- Spanning 5 years
- Data ratio:
 - 49% with the INVOSTM system
 - 51% without the INVOSTMsystem



Procedure Types

SURGICAL COMPLICATIONS NOT EASILY PREDICTABLE

In analyzing STS data from 10,778 cases, the favorable association the INVOS™ monitoring system had on the incidence of complications was greater than expected¹⁷



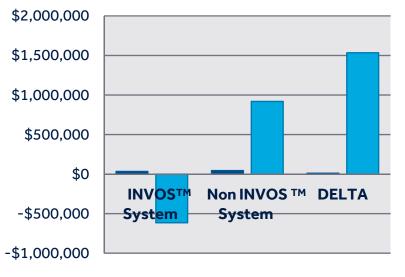
OUTCOME IMPROVEMENT AND COST AVOIDANCE RENAL FAILURE¹⁷

OCCURRENCE	INVOS ™ System	Non-INVOS™ System	
Total Number of Cases = 320			
Expected	232	211	
Observed	106	214	
Avoided Complication	(126)	+3	

COST OF COMPLICATION	INVOS ™ System	Non-INVOS™ System
Median Direct Cost/Case	\$32,508	\$41,879
Avoided/Incremental Cost	(\$4,096,008)	+\$125,637
Total Cost Benefit		\$4,221,645

Cost Impact of Renal Failure

Median Cost/Renal Failure Case


Total (Avoided)/Incurred Cost

OUTCOME IMPROVEMENT AND COST AVOIDANCE NEUROLOGICAL INJURY - STROKE¹⁷

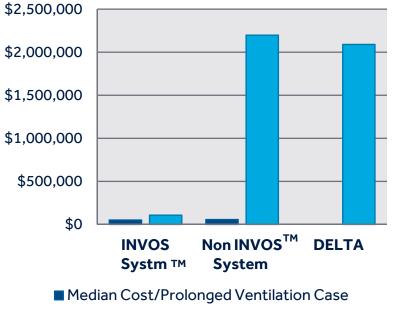
OCCURRENCE	INVOS ™ System	Non-INVOS™ System	
Occurrence of Complication (Total n=145)			
Expected	71	71	
Observed	53	92	
Avoided Complications	(18)	+21	

COST OF COMPLICATION	INVOS ™ Non-INVOS [™] System System	
Cost of Complication/Case	\$33,360	\$43,892
Avoided/Incremental Cost	: (\$600,480) +\$921,73	
Total Cost Benefit		\$1,522,212

Cost Impact of Stroke

Median Cost/Stroke Case

Total (Avoided)/Incurred Cost


1. Data source: INVOS Comparative Effectiveness Analysis, September 2015

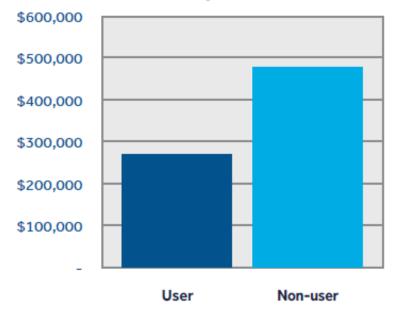
OUTCOME IMPROVEMENT AND COST AVOIDANCE PROLONGED MECHANICAL VENTILATION (MV)¹⁷

OCCURRENCEINVOS TM
SystemNon-INVOS TM
SystemTotal Number of Cases = 1,249Expected614594Observed616633Avoided Complications+2

COST OF COMPLICATION	INVOS ™ System	Non-INVOS™ System		
Cost of Complication/Case	\$51,215	\$56,227		
Incremental Cost	Incremental Cost +\$102,430 +\$2			
Total Cost Benefit		\$2,090,423		

Cost Impact of Prolonged MV

Total (Avoided)/Incurred Cost

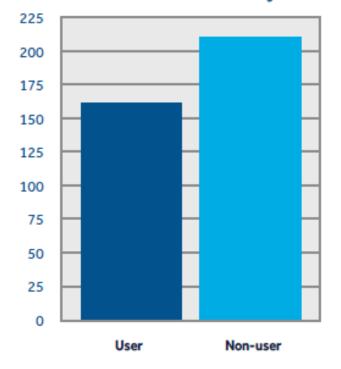

1. Data source: INVOS Comparative Effectiveness Analysis, September 2015

OUTCOME IMPROVEMENT AND COST AVOIDANCE 30-DAY READMISSION RATES¹⁷

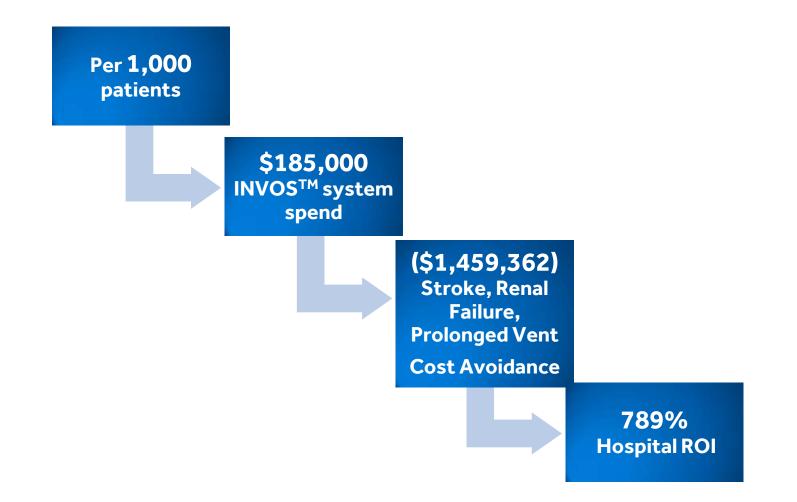
OCCURRENCE	USER	NON-USER
N (%) of cases readmitted within 30 days	302 (5.2%)	536 (9.7%)



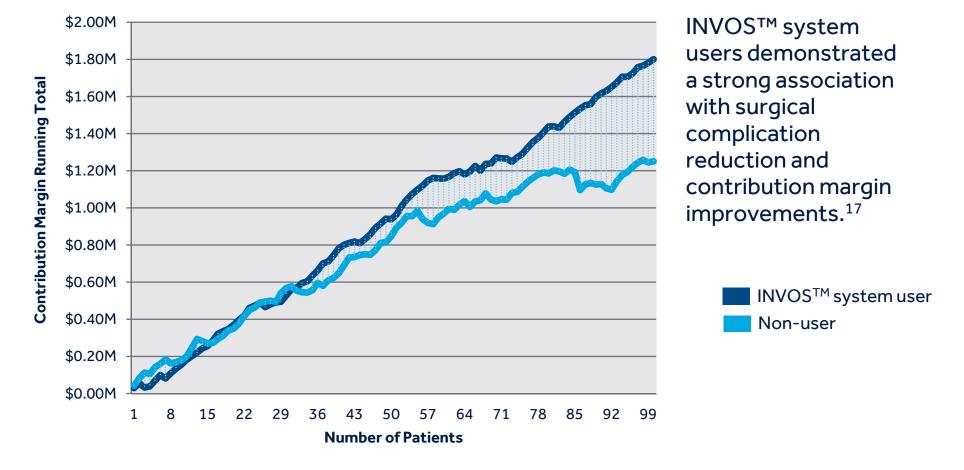
Cost Associated with 30-Day Readmission



OUTCOME IMPROVEMENT AND COST AVOIDANCE MORTALITY¹⁷


OCCURRENCE	USER	NON-USER
Observed Rate	158 (3.0%)	209 (3.8%)

Observed Mortality



THE HOSPITAL'S BOTTOM LINE OBSERVED IMPACT ON CONTRIBUTION MARGIN ¹⁷

THE OPPORTUNITY CASE VARIABILITY AND IMPACT ON PROFIT

CV Surgery Program Profitability¹⁸

SUMMARY OF REDUCTION IN COMPLICATIONS AND COST AVOIDANCE ¹⁷

	INVOS™ System Observed- Expected	Non-INVOS [™] System Observed- Expected	Avoided Complications with INVOS™ System Use on All Patients	Cost Avoidance
Number of Patients	5,271	5,506		
Renal Failure	-126	3	129	\$4,221,645
Stroke	-18	21	39	\$1,522,212
Prolonged Mech Vent	2	39	37	\$2,090,423
Totals			205	\$7,834,280

QUESTIONS?

© 2018 Medtronic. All rights reserved. Medtronic, Medtronic logo and Further, Together are trademarks of Medtronic. All other brands are trademarks of a Medtronic company. 17-weu-invos-comparative-analysis-2074206

REFERENCES

- 1. Schoen J, Husemann L, Tiemeyer C, et al. Cognitive function after sevoflurane vs propofol-based anaesthesia for on-pump cardiac surgery: a randomized controlled trial. *Br J Anaesth*. 2011;106 (6): 840-50.
- 2. Deschamps A, Lambert J, Couture P, et al. Reversal of decreases in cerebral saturation in high-risk cardiac surgery. *J Cardiothorac Vasc Anesth*. Available online 18 June 2013, ISSN 1053-0770.
- 3. Murkin JM, Adams SJ, Novick RJ, QuantzM, Bainbridge D, Iglesias I, Cleland A, Schaefer B, Irwin B, Fox S. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. *Anesth Analg.* 2007;104(1):51–58.
- 4. Slater JP, Guarino T, Stack J, et al. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg. 2009;87(1):36-44.
- 5. Dasta JF, McLaughlin TP, Mody SH, et al. Daily cost of an intensive care unit day: the contribution of mechanical ventilation. *Crit Care Med.* 2005;33(6):1266-1271.
- 6. Colak Z, Borojevic M, Bogovic A, et al. Influence of intraoperative cerebral oximetry monitoring on neurocognitive function after coronary artery bypass surgery: a randomized, prospective study. *Eur J Cardio Thorac Surg*. 2015;47(3):447-454. Epub 2014 May 7.
- 7. Yao FSF, Tseng CC, Ho CA, Levin SK, Illner P. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. *J Cardiothorac Vasc Anesth*. 2004;18:552-558.
- 8. Schön J, Serien V, Hanke T, et al. Cerebral oxygen saturation monitoring in on-pump cardiac surgery a 1 year experience. *App Cardiopulm Pathophysiol*. 2009;13:243-52.
- 9. Goldman S, Sutter F, Ferdinand F, Trace C. Optimizing intraoperative cerebral oxygen delivery using noninvasive cerebral oximetry decreases the incidence of stroke for cardiac surgical patients. Heart Surg Forum. 2004;7(5):E376-381.

- 10. Prabhune A, Sehic A, Spence PA, Church T, Edmonds HL Jr. Cerebral oximetry provides early warning of oxygen delivery failure during cardiopulmonary bypass. *J Cardiothorac Vasc Anesth*. 2002; 16(2):204-6.
- 11. Moerman A, Vandenplas G, Bové T, Wouters PF, De Hert SG. Relation between mixed venous oxygen saturation and cerebral oxygen saturation measured by absolute and relative near-infrared spectroscopy during off-pump coronary artery bypass grafting. Br J Anaesth. 2013;110(2):258-265

REFERENCES

- 12. Goldman SM, Sutter FP, Wertan MC, Ferdinand FD, Trace CL, Samuels LE. Outcome improvement and cost reduction in an increasingly morbid cardiac surgery population. *Sem Cardiothorac Vasc Anesth*. 2006;10(2):171-175.
- 13. Medtronic data on file.
- 14. http://www.sts.org/about-sts
- 15. http://www.sts.org/sites/default/files/documents/pdf/pressreleases/STS%20Fact%20Sheet%202016%20November.pdf

- 16. http://www.sts.org/quality-research-patient-safety/quality/risk-calculator-and-models/risk-calculator
- 17. Medtronic Internal Sales FY15; INVOS Comparative Effectiveness Analysis, September 2015.
- 18. PotentiaMED Proprietary Database.